Formation of Chromosomal Domains by Loop Extrusion.

نویسندگان

  • Geoffrey Fudenberg
  • Maxim Imakaev
  • Carolyn Lu
  • Anton Goloborodko
  • Nezar Abdennur
  • Leonid A Mirny
چکیده

Topologically associating domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations-including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments-and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-organization of domain structures by DNA-loop-extruding enzymes

The long chromosomal DNAs of cells are organized into loop domains much larger in size than individual DNA-binding enzymes, presenting the question of how formation of such structures is controlled. We present a model for generation of defined chromosomal loops, based on molecular machines consisting of two coupled and oppositely directed motile elements which extrude loops from the double heli...

متن کامل

P-229: Chromosomal Analysis of Parthenogenetic Mouse Embryos Generated from In Vitro Activated Oocytes by Hydrostatic Pressure and Ethanol and Cytochalasin B

Background: Studies of preimplantation stage embryos by classic cytogenetic techniques have limitations, starting with the need for good metaphase stage when only one third of all analyzed embryos may show good quality metaphases. The incidence of chromosome anomalies in embryos produced by in vitro procedures is generally higher than that of embryos formed in vivo. Pressure specifically affect...

متن کامل

Cohesin Loss Eliminates All Loop Domains.

The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degr...

متن کامل

A mechanism of cohesin‐dependent loop extrusion organizes zygotic genome architecture

Fertilization triggers assembly of higher-order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single-nucleus Hi-C (snHi-C), but not bulk Hi-C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanis...

متن کامل

Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin

SMC proteins support vital cellular processes in all domains of life by organizing chromosomal DNA. They are composed of ATPase "head" and "hinge" dimerization domains and a connecting coiled-coil "arm." Binding to a kleisin subunit creates a closed tripartite ring, whose ∼47-nm-long SMC arms act as barrier for DNA entrapment. Here, we uncover another, more active function of the bacterial Smc ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 2016